K109PT TEMPERATURE-INSULATED CONVERTER FOR PT100 PROBES

The K109PT-HPC instrument converts a temperature signal read by a PT100 probe (EN 60 751) with connection by 2, 3 or 4 wires into a signal normalised in voltage or current. Resolution 14 bit

The module's main features are its compact size (6.2 mm), attachment to a 35 mm DIN rail, bus-connector power supply option, quick connection by spring terminals, 3-point insulation, and easy configuration in the field by DIP-switch.

Toohnigal Footures

Power supply: Consumption:	19,230 Vdc Max 24 mA at 24 Vdc
Input:	PT100 probe, EN 60751/A2 (ITS90)
	connection by 2, 3 or 4 wires
Current on sensor:	< 900 uA
Cable resistance:	Max. 15 Ω per wire
	-200160 °C
Resistance Range:	18162 Ω
Minimum span :	20 °C
Voltage output:	05 Vdc, 15 Vdc, 010 Vdc and 100 Vdc
- '	Minima load resistance: 2 kΩ
Current output:	020 mA, 420 mA, 200 mA e 204 mA
	Maximum load resistance: 500 Ω
Output in case of over-range:	102.5% of full scale value (see Table on Page 5)
Output in case of	105% of full scale value (see Table on Page 5)
malfunction: Current output protection:	
Current output protection:	approximately 25 mA
Transmission error:	0.1 % (max. range), or
	(20 K / ∆temp + 0.05) % (Measurement range)
Temperature Coefficient:	100 ppm
Response time (1090 %):	< 50 ms (without filter)
	< 200 ms (with repeat filter 50 Hz)
Insulation Voltage:	1,5 kV (50 Hz for 1 min)
Protection Index:	IP20
Operating Conditions:	Temperature -20+65 °C
Ct T	Humidity 3090 % at 40°C (non-condensing) -40+85 °C
Storage Temperature: LED Signalling:	
LED Signalling:	Setting error, connection malfunction, internal malfunction.
Connections:	Spring terminals
Conductor Section:	0.22.5 mm ²

SSENECA

Wire stripping:

MI001250-I/E

8 mm

ENGLISH - 1/8

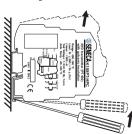
Box: Dimensions, Weight:	PBT (black colour) 6,2 x 93,1 x 102,5 mm, 50 g.
Standards:	EN61000-6-4/2002 (electromagnetic emission, industris surroundings) EN61000-6-2/2005 (electromagnetic immunity, industris surroundings) EN61010-1/2001 (safety) All the circuits must be provided with double insulatio from the circuits under dangerous voltage. The power supply transformer must be built to compliance wit EN60742: "Insulation transformers and Safet transformers".

Installation rules

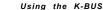
This module has been designed for assembly on a DIN 46277 rail. Assembly in vertical position is recommended in order to increase the module's ventilation, and no raceways or other objects that compromise aeration must be positioned in the vicinity.

Do not position the module above equipment that generates heat; we recommend positioning the module in the lower part of the control panel or container compartment. We recommend rail-type assembly using the corresponding bus connector (Code K-BUS) that eliminates the need to connect the power supply to each module

MI001250-I/E


Inserting the module in the rail

1 - Attach the module in the upper part of 2 - Press the module downwards


SENECA

Removing the module from the rail

1 - Apply leverage using a screwdriver (as shown in the figure). 2 - Rotate the module upwards

ENGLISH - 2/8

1 - Compose the K-BUS connectors as required in order to obtain the number of positions necessary (each K-BUS permits the insertion of no. 2 modules).

2 - Insert the K-BUS connectors in the rail by positioning them on the upper side of the rail and then rotating them downwards.

IMPORTANT: Pay particular attention to the position of the protrudent terminals of the K-BUS. The K-bus must be inserted in the guide with the protrudent terminals on the left (as shown in the figure) otherwise the modules are turned upside downs.

- Never connect the power supply directly to the bus connector on the DIN

- Never tap power supply from the bus connector either directly or by using the module's terminals

SETTING OF THE DIP-SWITCHES

Factory setting

All the module DIP switches are at pos. 0 as defaut configuration This set correspond to the following configuration

PT100 wiring Input Filter → present Output Signal → 4 20 mA Measurement Range Start → -20 °C Measurement Full-Scale → 160 °C

Output signal in case of → Towards the top of the output range

→ YES: a 2.5% over-range value is acceptable; Over-Range a 5% over-range value is considered a malfunction.

It is understood that this configuration is valid only with all the DIP switches at position

If also one Dip is moved, it is necessary to set all the other parameter as indicated on the following tables

Note: for all following tables
The indication ● indicates that the DIP-switch is set in Position 1 (ON). No indication is provided when the DIP-switch is set in Position 0 (OFF).

MI001250-I/E

ENGLISH - 3/8

PT10	00	WIRING
SW1	1	
	•	2 / 4 wires
	Г	3 wires
	_	
INPU	IT	FILTER (*)
INPU		FILTER (*)
		FILTER (*) Absent

repeating of the disturbance signal at 50 Hz overlapping the measurement signal.

	UTPUT SIGNAL							
SW1	3	4	5					
				420 mA				
	•			020 mA				
		•	П	204 mA				
	•	•		200 mA				
			•	010 Vdc				
		•	•	100 Vdc				
	•	•	•	05 Vdc				
	•		•	15 Vdc				

EASU	EASUREMENT RANGE START								
S	SW	11	SW2						
6	7	8	1	°C					
	Г	Т		0					
•	Т	Г		10					
		Т		20					
•		Т		30					
	Г	•		40					
•	Г	•		50					
				80					
•				100					
	Г	Т	•	-10					
•	Τ	Т	•	-20					
		Т	•	-30					
•		Т	•	-40					
	Т		•	-50					
•	Т		•	-100					
			•	-150					
•			•	-200					
- 1-	, -	, -							

O CENIEO A		
SSENECA	MI001250-I/F	FNGLISH

MEASUREMENT FULL SCALE													
	SW2			2					S	W	2		
	2	3	4	5	6	°C		2	3	4	5	6	°C
	Г		П	Г	П	0	1	Г			Г	•	80
	•		П	П	П	5	1	•		П	Г	•	85
	Г	•	Г	Г	П	10	1	Г	•	Г	Г	•	90
	•	•	Γ	Γ	Г	15	1	•	•	Γ	Γ	•	95
	Г		•			20		Г		•		•	100
	•		•			25		•		•		•	105
		•	•			30		Г	•	•		•	110
	•	•		Г	П	35	1	•	•	•	Г	•	115
				•		40					•	•	120
	•			•		45		•			•	•	125
		•		•		50			•		•	•	130
	•	•	Г	•	П	55	1	•	•	Г	•	•	135
	Г	Г	•	•		60		Г		•	•	•	140
	•		•	•		65		•		•	•	•	145
		•	•	•		70		Г	•	•	•	•	150
	•	•		•		75		•	•	•	•	•	160

	•	Towards the bottom of the output range					
		Towards the top of the output range					
OVE	R-I	RANGE (*)					
SW2	8						
	•	NO: the malfunction alone causes a 2.5% over-range value.					
		YES: a 2.5% over-range value is acceptable;					
	ı	a 5% over-range value is considered a malfunction.					

(*) See the table below for the corresponding values.

OUTPUT SIGNAL IN CASE OF MALFUNCTION

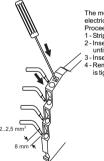
Malfunction ± 5 %			
21 mA			
lc			
lc			
lc			
1			

Power supply

each module

supply.

supply.


SSENECA

modules with power

MI001250-I/E

ENGLISH - 5/8

Electrical Connections

There are various ways to provide the K Series

sized fuse must be connected in series to the power supply.

1 - Direct power supply to the modules by

connecting 24 Vdc power supply directly to

Terminals 7 (+) and 8 (-) of each module

The module has been designed for spring-type terminal electrical connections.

Proceed as follows to make the connections

1 - Strip the cables by 0.8 mm

2 - Using the K-BUS connector accessory for the distribution of the power supply to the

modules via bus connector, in this way eliminating the need to connect power supply to

The bus can be supplied from any of the modules; the total absorption of the bus must be

less than 400 mA. Higher absorption values can damage the module. An appropriately

3 - Using the K-BUS connector accessory for the distribution of the power supply to the modules via bus connector and the K-SUPPLY accessory for the connection of the power

The K-SUPPLY accessory is a 6.2 mm wide module that contains a set of protections designed to protect the modules connected via bus against over-voltage loads.

The bus connector can be provided with power using the K-SUPPLY module if the total

absorption of the bus is less than 1.5 A. Higher absorption values can damage both the

module and the bus. An appropriately sized fuse must be connected in series to the power

MI001250-I/E

2 - Insert a screwdriver in the square hole and press it until the cable lock spring opens. - Insert the cable in the round hole.

19.2..30 Vdc

POWER

ENGLISH - 6/8

- Remove the screwdriver and make sure that the cable is tightly fastened in the terminal.

POWER SUPPLY Note: in order to reduce the instrument's dissipation, we recommend either using the output for voltage or guaranteeing a load of > 250 Ω to the current output.

LED indications on the front

OUTPUT

LED	Meaning
Rapid flashing 1 pulse/sec.	Internal malfunction
Slow flashing 3 pulses/sec.	DIP-switch setting error (SPAN < 20° C)
Steady light	PT100 connection wire malfunction. 3rd wire resistance over-range

The module accepts input from a PT100 temperature probe (EN 60 751) with connection

This is the connection to be used for short distances (< 10 m) between module and probe.

bearing in mind that it adds an error equivalent to the resistance contributed by the

3-wire connection
This is the connection to be used for media-long distances (> 10 m) between module and probe. The instrument performs compensation for the resistance of the connection cables.

In order for compensation to be correct, it is necessary that the resistance values of all

cables be equal because in order to perform compensation the instrument measures the resistance of only one cable and assumes the resistance of the others cables to be exactly

This connection to be used for media-long distances (> 10 m) between module and probe.

Provides the maximum precision because the instrument measure the resistance of the

The PT100 measure is effected in impulsive way for a very short time to reduce the module consumption. For this reason, some electronic calibrators could not be able to generate

MI001250-I/E

PT100 3 wires

1

(2)²

PT100 2 wires

ENGLISH - 7/8

PT100 4 wires

1)-

2)-

(3)

The use of shield cables is recommended for the electronic connections.

by 2, 3 or 4 wires

2-wire connection

the same.

POWER SUPPLY

SENECA

Output

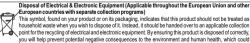
the simulated signal in the right way.

Voltage connection - Current connection (applied current)

The use of shield cables is recommended for the electronic connections.

4-wire connection

connection cables to the measurement


DIP-switch SW1-1 set in Position 1 (ON) (2/4 wires).

DIP-switch SW1-1 set in Position 0 (OFF) (3 wires). With bridge between Terminals 3 and 4.

DIP-switch SW1-1 set in Position 1 (ON) (2/4 wires).

With bridges between Terminals 1 and 2 and Terminals 3 and 4.

sensor independently of the resistance of the connection cables.

European countries with separate collection programs) This symbol, found on your product or on its packaging, indicates that this product should not be treated as household waste when you wish to dispose of it. Instead, it should be handed over to an applicable collection point for the recycling of electrical and electronic equipment. By ensuring this product is disposed of correctly, you will help prevent potential negative consequences to the environment and human health, which could otherwise be caused by inappropriate disposal of this product. The recycling of materials will help to conserve natural resources. For more detailed information about the recycling of this product, please contact your loca city office, waste disposal service or the retail store where you purchased this product.

This document is property of SENECA srl. Duplication and reprodution are forbidden, if not authorized. Contents of the present documentation refers to products and technologies described in it. All technical data contained in the document may be modified without prior notice Content of this documentation is subject to periodical revision

SENECA s.r.l.

Via Germania, 34 - 35127 - Z.I. CAMIN - PADOVA - ITALY Tel. +39.049.8705355 - 8705359 - Fax +39.049.8706287

e-mail: info@seneca.it - www.seneca.it

MI001250-I/E ENGLISH - 8/8